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We use 106 pb�1 of data collected with the Collider Detector at Fermilab to search for narrow-

width, vector particles decaying to a top and an anti-top quark. Model independent upper limits on

the cross section for narrow, vector resonances decaying to t�t are presented. At the 95% con�dence

level, we exclude the existence of a leptophobic Z0 boson in a model of topcolor-assisted technicolor
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with mass MZ0 < 480 GeV=c2 for natural width � = 0.012 MZ0 , and MZ0 < 780 GeV=c2 for � =

0.04 MZ0 .

PACS numbers: 14.65.Ha, 13.85.Ni, 13.85.Qk
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In this letter, we present a model-independent search
for narrow, vector resonances decaying to t�t. This search
is sensitive to, for example, a Z 0 predicted by topcolor-
assisted technicolor [1,2]. This model anticipates that the
explanation of spontaneous electroweak symmetry break-
ing is related to the observed fermion masses, and that
the large value of the top quark mass suggests the intro-
duction of new strong dynamics into the standard model.
It accounts for the large top quark mass by predicting the
existence of a residual global symmetry SU(3)�U(1) at
energies below 1 TeV. The SU(3) results in the genera-
tion of topgluons which we have searched for previously
in the b�b channel [3]. The U(1) gives the Z 0 we search
for here. In one model [2], the Z 0 decays exclusively to
quarks (leptophobic) resulting in a large cross section for
t�t.
With the z-axis de�ned along the proton beam, the

Collider Detector at Fermilab (CDF) coordinate system
de�nes � as the azimuthal angle in the transverse plane, �
as the polar angle, and pseudorapidity � as � ln (tan �

2
).

Tracking chambers, immersed in a 1.4-Tesla solenoidal
magnetic �eld, are used for the detection of charged
particles and the measurement of their momenta. The
precision track reconstruction of the silicon microstrip
vertex detector (SVX), located immediately outside the
beampipe, is used for the detection of displaced sec-
ondary vertices resulting from b-quark decays. Outside
the SVX is the vertex time projection chamber (VTX)
which provides further tracking information for j�j �
3:25. Both the SVX and VTX are housed within the cen-
tral tracking chamber (CTC), a wire drift chamber used
to measure charged particle momenta. Electromagnetic
and hadronic calorimeters, located beyond the CTC and
superconducting solenoid, measure energy in segmented
�-� towers out to j�j < 4.2. Drift chambers used for muon
detection reside outside the calorimetry. A more detailed
description of the CDF detector can be found elsewhere
[4,5].
Standard model t�t production in p�p collisions at a cen-

ter of mass energy of
p
s = 1:8 TeV is dominated by q�q

annihilation, while �10% is attributable to gluon-gluon
fusion. Once a t�t pair is produced, each of the top quarks
is expected to decay almost exclusively to Wb. The
search presented here focuses on the t�t event topology in
which one W boson decays hadronically while the other
decays to an electron or muon and its corresponding neu-
trino. The fragmentation of the b-quarks, as well as the
hadronic daughters of the W boson, form jets. Accord-
ingly, t�t candidates in this \lepton + jets" channel are
characterized by a single lepton, missing transverse en-
ergy, 6ET [6], due to the undetected neutrino, and at least
four jets. Furthermore, a jet resulting from a b-quark can
be identi�ed (or \tagged") as such by the reconstruction
of a secondary vertex from the b hadron decay using the
SVX, or by using the soft lepton tagging (SLT) algorithm
to �nd an additional lepton from a semileptonic b decay
[5,7].
Like the top quark mass measurement [8], events in-

cluded in our measurement of the t�t invariant mass spec-
trum must �rst contain a lepton candidate in the central
detector region (j�j < 1.0). This lepton is required to be
either an isolated electron with transverse energy (ET)
in excess of 20 GeV or an isolated muon with transverse
momentum (PT) in excess of 20 GeV=c. Events must also
include at least 20 GeV of 6ET, attributable to the pres-
ence of a neutrino, as well as at least four jets with j�j <
2.0 and raw ET > 15 GeV. Raw jet energies are the val-
ues which result from clustering signals in the calorimeter
towers before any o�ine jet corrections are applied. To
increase the acceptance rate for t�t events, the require-
ments for the fourth jet are relaxed such that the raw ET
must only be greater than 8 GeV with j�j < 2.4 in events
where at least one of the leading three jets is tagged by
the SVX or SLT algorithms. All jets in this analysis are
formed as clusters of calorimeter towers within cones of
�xed radius �R �

p
(��)2 + (��)2 = 0:4. In 106 pb�1

of data, we observe 83 events which satisfy these require-
ments.
This method builds upon the techniques developed for

the top quark mass measurement [8] by �tting each event
to the hypothesis of t�t production followed by decay in
the lepton+jets channel:

p �p �! t �t �

- W� �b

- q �q0 (or l� ��l)

- W+ b

- l+ �l (or q �q0)

The four-momenta of these 13 objects fully describe a
t�t event. The three-momenta of the charged lepton and
four jets are measured directly. To compute the energies
of these objects, the b and �b quark masses are taken to
be 5 GeV=c2, the q and �q0 masses are taken to be 0.5
GeV=c2, and the charged lepton mass is assigned accord-
ing to its identi�cation as either an electron or a muon.
The components of transverse momentum for the recoil-
ing system, �, are measured directly from extra jets in
the event and unclustered energy deposits that are not
included in lepton or jet energies. The transverse mo-
mentum components of the neutrino are computed by
requiring that the total ET in the event sums to zero.
While the neutrino is assumed to be massless, its longitu-
dinal momentum is a free parameter in the kinematic �t
in which the q�q0 and `� invariant masses are constrained
to equal the W boson mass. We perform a kinematic �t
to the production and decay of the t�t pair as described
by the decay chain shown above. This �tting procedure,
which depends on the minimization of a �2 expression [9],
allows the lepton energy, the jet energies and the unclus-
tered energy to vary within their respective uncertainties.
The �tted results for these values determine the t and �t
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four-momentum, from which the t�t invariant mass (Mt�t)
can be computed. To improve theMt�t resolution, we also
constrain the twoWb invariant masses to 175 GeV/c2, in
agreement with the most recent measurement of the top
quark mass [10]. We use only the four highest ET jets,
leading to 12 combinations for assigning jets to the b, �b,
and hadronic W daughters. However, because we mea-
sure only the transverse component of the total energy,
thereby determining 6ET, a two-fold ambiguity in the lon-
gitudinal component of the neutrino momentum results
in 24 combinations. We further require that jets that
are SVX or SLT-tagged be assigned to b-quarks, thereby
reducing the number of combinations.
Electron energies and muon momenta are measured

with the calorimeter and tracking chambers, respectively
[11]. A set of generic jet corrections is applied to the ener-
gies of all the jets in an event to account for absolute en-
ergy scale calibration, contributions from the underlying
event and multiple interactions, as well as energy losses
in cracks between detector components and outside the
clustering cone. These corrections are determined from
a combination of Monte Carlo simulations and data [12].
The four leading jets in a t�t event undergo an additional
energy correction that depends on the type of parton
that they are assumed to be in the �t: a light quark,
a hadronically decaying b quark, or a b quark that de-
cayed semileptonically. These parton-speci�c corrections
account for (a) the di�erences in the expected PT distrib-
utions of jets from t�t and the shape which was assumed to
derive the generic jet corrections mentioned above, and
(b) the energy losses from semileptonic b and c-hadron
decays. These corrections were derived from a study of t�t
events generated with the herwig Monte Carlo program
[13].
Using Monte Carlo simulations of signal and back-

ground events, we explored several event selection cri-
teria in an attempt to optimize our discovery potential
[14]. Of the 24 possibilities for each event, we select the
Mt�t value which corresponds to the con�guration with
the lowest �2. To reduce the probability of selecting
con�gurations with incorrect parton assignments which
tend to yield arti�cially low values of Mt�t, we re�t each
event after releasing the constraint that the Wb invari-
ant mass be equal to 175 GeV/c2 and demand that the
�t for this particular con�guration return a value for the
top quark mass between 150 GeV/c2 and 200 GeV/c2.
To further reduce incorrect combinations and to increase
discovery potential for a new particle decaying to t�t, we
apply a �2 cut. For narrow width t�t resonances, simula-
tion predicts that the width of the Mt�t spectrum is � 6%
of the resonance mass for cases in which the correct jet
con�guration is selected. For resonances with a natural
width � that is signi�cantly less than 6% of the nominal
mass, the CDF detector resolution will dominate and the
resonances will all have approximately the same shape
(shown in the inset of Fig. 1 for a mass of 500 GeV=c2).
At lowMt�t, the presence of residual events with incorrect
parton assignments is evident in this �gure.

The selection criteria described above eliminate an ad-
ditional 20 events from our data sample and the resulting
Mt�t spectrum is shown in Fig. 1, along with the expected
standard model t�t and QCD W+jets background shapes
normalized to the data. While the non-t�t background is
dominated by W+jets events, it also includes contribu-
tions from multijet b�b events with one jet misidenti�ed
as a lepton, Z+jets events, events with a boson pair,
and single-top production. However, it has been shown
that the vecbos [15] W+jets shape alone is su�cient in
modeling the entire non-t�t background spectrum [8]. For
this analysis, the expected non-t�t background prediction
of 31.1 � 8.5 events is calculated as in Ref. [9], but ac-
counts for di�erences in selection criteria. We �nd that
the Mt�t distribution of 63 data events is consistent with
the hypothesis that the spectrum is comprised of stan-
dard model t�t production and the predicted rate of non-t�t
background events, as shown in Fig. 1.
Because we cannot present evidence for a narrow t�t

resonance, we establish upper limits on the production
cross-section for a new vector particle, X , of mass MX

decaying and to t�t. For natural widths � = 0:012MX

and � = 0:04MX, and for each MX between 400 GeV=c2

and 1 TeV=c2 in increments of 50 GeV=c2, we perform a
binned-likelihood �t of the data. To determine the likeli-
hood function for a given MX and �, we �t the Mt�t spec-
trum from the data to the expected Monte Carlo shapes
for both the t�t and QCD W+jets background sources as
well as a resonance signal X ! t�t which we model using
Z 0 ! t�t in pythia [16].
Our analysis is subject to several sources of systematic

uncertainty on the expected shape of background and sig-
nalMt�t spectra and/or the signal acceptance rate. Treat-
ing these two types of systematic e�ect separately, we
establish the magnitude of each source through a Monte
Carlo procedure which quanti�es the e�ect of varying
the source of uncertainty by one standard deviation. We
determine the uncertainty contributions due to the jet
ET scale, initial and �nal state gluon radiation, and the
non-t�t background spectrum using methods described in
Ref. [9]. The uncertainty in the measurements of the top
quark mass [10] and total integrated luminosity [17] are
included in our study of systematic e�ects, as well as the
uncertainty due to the choice of parton distribution func-
tions (PDF). The remaining sources of systematic uncer-
tainty considered are all small and include trigger e�-
ciency, lepton identi�cation, tracking e�ciency, z-vertex
e�ciency, and Monte Carlo statistics. The uncertainties
resulting from jet ET scale and top quark mass are cor-
related and we conservatively take this correlation to be
100%.
The percent uncertainty in �X � BRfX ! t�tg is listed

in Table I for each of the systematic sources at several
di�erent resonance masses. The systematic e�ect due to
uncertainty in the top quark mass (Mtop) is dominant
at low MX, whereas the e�ect due to the uncertainty in
modeling �nal state radiation dominates at large MX.
To ensure that our estimates are conservative, the sys-

5



tematic uncertainty is taken to be a constant number of
pb below the value of �X �BRfX! t�tg corresponding to
the 95% C.L. limit obtained with statistical uncertainties
only [14]. That constant is the estimate of the systematic
uncertainty at the 95% C.L. limit. Above the same value
of �X �BRfX! t�tg, we use a systematic uncertainty that
rises with �X �BRfX! t�tg at the �xed percent rate listed
in Table I.
For each resonance mass and width, we convolute the

statistical likelihood shape with the Gaussian total sys-
tematic uncertainty and extract the 95% C.L. upper limit
on �X �BRfX! t�tg which is listed in Table II and shown
in Fig. 2. The systematic uncertainties increase the 95%
C.L. upper limit by 27% for MX = 400 GeV=c2, but only
7% (6%) for MX = 600 (800) GeV=c2 because statisti-
cal uncertainties dominate the likelihood. Also shown in
Fig. 2 are the theoretical predictions for cross-section
times branching ratio for a leptophobic Z 0 with natural
width � = 0:012MZ0 and � = 0:04MZ0 [2]. At 95% con-
�dence, we exclude the existence of a leptophobic top-
color Z 0 with mass MZ0 < 480 GeV=c2 for natural width
� = 0.012 MZ0 , and mass MZ0 < 780 GeV=c2 for � =
0.04 MZ0 . For larger widths, detector resolution will no
longer be the dominant factor in determining the Z 0 sig-
nal shape, so our limits are no longer applicable.
In conclusion, after investigating 106 pb�1 of data col-

lected at CDF, we �nd no evidence for a t�t resonance
and establish upper limits on cross-section times branch-
ing ratio for narrow resonances. We have used these lim-
its to constrain a model of topcolor assisted technicolor.
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`
`
`
`
`
`

M̀X (GeV/c2) 400 600 800

Source
`
`
`
`
`
`
`

Jet ET 6.1 6.2 4.4

Mtop 22 3.1 8.7

Jet ET and Mtop 28 9.3 13

Initial state radiation 14 4.2 5.6

Final state radiation 19 16 12

b-tagging bias 4.6 0.79 0.85

PDF 11 5.5 4.8

QCD background shape 1.3 0.17 0.045

Additional acceptance e�ects 5.3 5.3 5.3

Luminosity 4.0 4.0 4.0

Total 39 21 20

TABLE I. The percent systematic uncertainty in

�X � BRfX! t�tg from various sources.
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MX 95% C.L. upper limit

(GeV=c2) �X � BRfX! t�tg (pb)

for � = 0:012MX for � = 0:04MX

400 6.60 6.51

450 5.21 6.32

500 7.31 6.97

550 3.58 3.95

600 1.92 2.23

650 1.82 1.92

700 1.53 1.63

750 1.21 1.27

800 0.97 1.07

850 0.91 1.02

900 0.93 1.08

950 1.00 1.10

1000 1.00 1.23

TABLE II. The 95% C.L. upper limit on the cross section

times branching ratio for vector particles decaying to t�t, as a

function of mass, for two natural widths. Reconstructed Mtt (GeV/c2)
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FIG. 1. The observed Mt�t spectrum (points) compared to

the QCDW+jets background (�ne dashes) and the total stan-

dard model prediction including both QCD W+jets and t�t

production (thick dashes). The t�t prediction has been nor-

malized such that the number of events in the total stan-

dard model prediction is equal to the number of events in

the data. The inset shows the expected Mt�t shape resulting

from the simulation of a narrow, vector X ! t�t resonance

(MX = 500 GeV=c2, � = 0:012MX) in the CDF detector.
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FIG. 2. The 95% C.L. upper limits on �X �BRfX! t�tg as
a function of mass (solid and open points) compared to the

cross section for a leptophobic topcolor Z0 (thick solid and

dashed curves) for two resonance widths (� = 0.012 MZ0 and

� = 0.04 MZ0).
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